Scientific Computing on Graphics Processing Units

Nicholas Frontiere ANL/University of Chicago ATPESC

Overview

- ► GPU vs. CPU
- CUDA vs. OpenCL (Briefly)
- OpenCL execution and memory framework
- ▶ GPU Hardware
- GPU Coding Obstacles and Solutions
 - Lock in Step execution (divergent if's)
 - Memory Latency
 - Coalesced Memory
 - Bank Conflicts
- N-Body Example
- Conclusion

GPU vs. CPU

*D. Kirk & W. Hwu 2010

CPU

- Follows the "multicore" design of a microprocessor
 - Attempt to increase the speed of <u>sequential programs</u>.
 - Example Intel i7 processor.
- Optimized to handle out of order execution
- Retains multilevel cache for quick memory access
- Implements sophisticated branch prediction
- Multiple cores allow for increased multi-tasking as well as threading

GPU

- ▶ Follows the "many-core" design of a microprocessor
 - Maximize throughput of parallel algorithms.
- ▶ Typically the number of cores doubles with each new generation
 - Same is true for CPUs, yet GPU's have many many more cores.
- Throughput of Single Precision has increased dramatically

*http://docs.nvidia.com/

Question

Would you rather outsource to a

Grad Student Capable Contractor

High Latency Low Throughput Low Latency Good Throughput

Question

BUT what about MORE grad students?

BUT wha GPOUT WHOR Parked students?

Ok Latency
High Throughput

Low Latency Good Throughput

Amdahl's Law

Number of Processors

Take Away

Completely limited by the Serial Fraction!

- Examples of GPU accelerated code:
 - Matrix multiplication, Graphics, Tabular applications, Visual Reduction, etc.

OpenCL vs. Cuda

- ▶ Both languages capable of executing GPU kernels.
- CUDA is vendor dependent (Nvidia GPUs)
- OpenCL can run on many different heterogeneous platforms (CPU, GPU, DSP, etc)
- CUDA is more mature and as a result has highly optimized libraries
- OpenCL would be considered a "lower level" language and thus harder to code.
- Which to choose?
 - Depends on what you want to do, what platforms you want to use, and the targeted users.

OpenCL Platform Model

- Host code (CPU)
 - Device Queries and Platform Setups (allows one to use multiple devices)
 - Push/pull memory to/from device (GPU)
 - Compile and Launch Kernel(s)
 - Typically performs the branched logic of the application
- Kernel Code (GPU)

```
// Create an OpenCL context on first available platform
context = CreateContext();
// Create a command-queue on the first device available on the created context
commandQueue = CreateCommandQueue(context, &device);
// Create OpenCL program from HelloWorld.cl kernel source
program = CreateProgram(context, device, "HelloWorld.cl");
// Create OpenCL kernel
kernel = clCreateKernel(program, "hello kernel", NULL);
 // Set the kernel arguments (result, a, b)
errNum = clSetKernelArg(kernel, 0, sizeof(cl mem), &memObjects[0]);
errNum |= clSetKernelArg(kernel, I, sizeof(cl mem), &memObjects[1]);
errNum |= clSetKernelArg(kernel, 2, sizeof(cl mem), &memObjects[2]);
size t globalWorkSize[I] = { ARRAY SIZE };
size t localWorkSize[I] = { I };
// Queue the kernel up for execution across the array
errNum = clEnqueueNDRangeKernel(commandQueue, kernel, I, NULL,
                     globalWorkSize, localWorkSize,
                     0, NULL, NULL);
// Read the output buffer back to the Host
errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], CL_TRUE,
                  0, ARRAY SIZE * sizeof(float), result,
                  0, NULL, NULL);
```

OpenCL Kernel Execution

- Kernels get executed by threads or "work items." Each item is assigned a "global index (id)"
- These work items are collected as "work groups," and assigned a "group id" and "local id"
- These id's allow the kernel code to perform thread, group, or global specific tasks.

(0,0)	(0,1)	(0,0)	(0,1)	(0,0)	(0,1)	(0,0)	(0,1)
(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
(1,0)	(1,1)	(1,0)	(1,1)	(1,0)	(1,1)	(1,0)	(1,1)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
(0,0)	(0,1)	(0,0)	(0,1)	(0,0)	(0,1)	(0,0)	(0,1)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
(1,0)	(1,1)	(1,0)	(1,1)	(1,0)	(1,1)	(1,0)	(1,1)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)

Local Id

Global Id

Group Id

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

OpenCL Memory Hierarchy

GPU Hardware

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

GPU Hardware

- ► Each Work-Item (thread) is executed on a Stream Processor (SP)
- SPs are located on one Stream Multiprocessor (SM or SMX)
 - Work-Groups are executed on SM's, where local memory is provided.
- Warp Schedulers execute threads of Work-groups on the SM's; a common optimization goal is to execute as many "warps" on each SM as possible.

GPU Execution Model (SIMT)

- Work Groups are executed via 32 thread launches (aka Warps)
- Warps follow Single Instruction Multiple Threading (i.e. all threads in a warp perform the SAME instruction); Optimization implications, will come back to this.
- Multiple warps can be executed concurrently on the same SM, aka "waves." Keplar GPU's can schedule 4 warps concurrently. However the maximum number of warps will not always launch; Depends on memory, number of threads per warp, number of threads per group, etc.
- ► Tails: If groups are not divisible by warp size, can affect performance.

GPU Hardware

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

3.0

32

64

16

63

1024

16K

32K

48K

No

No

JULY 31, 2013

2^32-1

2048

65536

3.5

32

64

16

2048

65536

255

1024

16K

32K

48K

Yes

Yes

20

2^32-1

2.1

32

48

8

63

1024

16K

48K

No

No

ATPESC

2^16-1

1536

32768

	http://www.nv
lardware	NVIDIA-Keple
ai Gvvai v	Whitepaper.po
	• • • • • • • • • • • • • • • • • • •

2.0

32

48

8

63

1024

16K

48K

No

No

2^16-1

1536

32768

FERMI	FERMI	KEPLER	KEPLER
GF100	GF104	GK104	GK110

Compute Capability

Max Warps / Multiprocessor

Max Threads / Multiprocessor

Max Thread Blocks / Multiprocessor

Shared Memory Size Configurations (bytes)

32-bit Registers / Multiprocessor

Max Registers / Thread

Max X Grid Dimension

Dynamic Parallelism

NICHOLAS FRONTIERE

ARGONNE NATIONAL LABORATORY

Hyper-Q

Max Threads / Thread Block

Threads / Warp

GPU obstacle: Shortage of Memory

- Copying memory from the host CPU to GPU is a necessary step in all GPU kernel applications.
- Unfortunately, GPUs can only store a couple GBs of memory in total; even state-of-the-art Kepler can only hold around 8 GBs. Many applications require more, and as a result employ continuous reading and writing to the GPU. This can typically result in transfer latency performance hits.
- Possible solution: Simultaneously copy memory to the GPU while performing calculations on the previous memory transfer.

Lock-Step Execution

Simple example is a divergent IF statemet:

```
If(get_local_id (0) < 4) {
       Do something
} else {
       Do something else
}</pre>
```

- SIMT ensures that when a warp of threads is launched for a work-group and encounters the above statement, both branches are executed (BAD).
- Two Solutions:
 - A) DON'T DO IT!
 - B) Make the branched logic modulo warp size.
 - Regardless should play around with group size

Memory Latency

- Fetching global memory requires many latency cycles (~ hundreds), and a result is one of the biggest performance hits.
- Local Memory on the other hand has much less latency cycles (~tens)
 but can have bank conflicts (described later)
- Solutions:
 - A) Hide latency with arithmetic calculation; while threads are waiting for a memory transfer other warps can be launched to do calculations. Depends on algorithm.
 - B) Do one copy from global to local memory and use the local memory speed to distribute the data. Can make use of Coalesced memory. NOTE: Global memory has GBs of data, whereas the local memory per SM has KBs. Very important to proceed

Coalesced Memory Transfer

If memory is accessed non-contiguously, memory fetches will be performed sequentially (BAD if from global memory)

If desired memory fetches are coalesced, the GPU can perform them all at once (modulo half warp size).

Bank Conflicts

- ► To avoid multiple global memory latencies, one can copy data to Local Memory for quick access. However, Local Memory is fetched with banks.
- Banks contain 4 bytes (Fermi) or 8 bytes (Kepler) of memory.
- GPUs typically contain 32 banks per SM
- If threads access different memory elements, then all fetches occur at maximum speed (GOOD). Otherwise, fetches are sequential (BAD). Exception: Broadcast to all threads is fast, can be very powerful

4-8

NVDIA OpenCL Visual Profiler

- Can profile kernel execution time, as well as host data transfer time.
- Can analyze memory bandwidth and instruction issue rate.
- Can report number of coalesced loads/stores
- Occupancy
 - Ratio of active warps per SM to maximum allowed.
 - Very informative measure of performance.

Exemplar: Short Range Force Solver

- Our N-body PM solver can resolve forces to ~ 3 grid units. We then require a short range solver to increase the resolution.
- A simple approach is to perform a brute force O(N²) nearest neighbor calculation (within radius of 3 cells) utilizing an accelerator such as a GPU (The P³M Method).
- One could also use a tree method to reduce computation. We currently have employed such an algorithm, but is not currently accelerated.
- ► The Brute Force method is a simple algorithm which combined with the GPU performance enchantment techniques discussed has proven to be a factor of 4-5 faster then the CPU tree code.
- NOTE: GPU code runs at approximately the same speed most redshift.

divide it into slabs

Keep Repeating

Keep Repeating

Optimization checklist:

- Memory Shortage:
 - ▶ Algorithm only requires slabs of data, not the entire cube.
- Lock-step execution:
 - As all particles in a group (chaining mesh) perform the same instruction -- calculate force from neighboring meshes -- there is no divergent logic within a work group.
- Global Memory Latency:
 - Each thread caches one particle from neighboring mesh into local memory; (thus only one fetch per particle per group not per thread!)
- Coalesced Memory Fetching?
 - Yes. As particle order does not matter for each mesh bin calculation, each thread can do a local cache sequentially, further reducing latency.
- Bank Conflicts:
 - Use broadcast from local memory as group of threads need to fetch the same particles.

Conclusion

- ▶ GPU acceleration gains are completely determined by serial fraction of the algorithm.
- OpenCL allows one to use any heterogeneous platform vs. CUDA which is a more mature but vendor specific language.
- Multiple GPU specific considerations
 - Memory Storage
 - Lock-step execution
 - Global memory latency
 - Coalesced memory fetching
 - Bank Conflicts
- Profilers exist to aid you in determining performance
- Question? nfrontiere@gmail.com

OpenACC

- Similar to OpenMP, utilized directives
- Perhaps a good first step toward attempting acceleration.
- With every higher level language, one loses sophistication
- Example: Matrix Multiplication

```
!$acc kernels
do k = I,nI
    do i = I,n3
        c(i,k) = 0.0
        do j = I,n2
            c(i,k) = c(i,k) + a(i,j) * b(j,k)
        enddo
    enddo
enddo
!$acc end kernels
```